278 research outputs found

    A theory of resolution

    No full text
    We review the fundamental resolution-based methods for first-order theorem proving and present them in a uniform framework. We show that these calculi can be viewed as specializations of non-clausal resolution with simplification. Simplification techniques are justified with the help of a rather general notion of redundancy for inferences. As simplification and other techniques for the elimination of redundancy are indispensable for an acceptable behaviour of any practical theorem prover this work is the first uniform treatment of resolution-like techniques in which the avoidance of redundant computations attains the attention it deserves. In many cases our presentation of a resolution method will indicate new ways of how to improve the method over what was known previously. We also give answers to several open problems in the area

    Rewrite-based equational theorem proving with selection and simplification

    No full text
    We present various refutationally complete calculi for first-order clauses with equality that allow for arbitrary selection of negative atoms in clauses. Refutation completeness is established via the use of well-founded orderings on clauses for defining a Herbrand model for a consistent set of clauses. We also formulate an abstract notion of redundancy and show that the deletion of redundant clauses during the theorem proving process preserves refutation completeness. It is often possible to compute the closure of nontrivial sets of clauses under application of non-redundant inferences. The refutation of goals for such complete sets of clauses is simpler than for arbitrary sets of clauses, in particular one can restrict attention to proofs that have support from the goals without compromising refutation completeness. Additional syntactic properties allow to restrict the search space even further, as we demonstrate for so-called quasi-Horn clauses. The results in this paper contain as special cases or generalize many known results about Knuth-Bendix-like completion procedures (for equations, Horn clauses, and Horn clauses over built-in Booleans), completion of first-order clauses by clausal rewriting, and inductive theorem proving for Horn clauses

    Weakly Equivalent Arrays

    Full text link
    The (extensional) theory of arrays is widely used to model systems. Hence, efficient decision procedures are needed to model check such systems. Current decision procedures for the theory of arrays saturate the read-over-write and extensionality axioms originally proposed by McCarthy. Various filters are used to limit the number of axiom instantiations while preserving completeness. We present an algorithm that lazily instantiates lemmas based on weak equivalence classes. These lemmas are easier to interpolate as they only contain existing terms. We formally define weak equivalence and show correctness of the resulting decision procedure

    Superposition with simplification as a decision procedure for the monadic class with equality

    No full text
    We show that strict superposition, a restricted form of paramodulation, can be combined with specifically designed simplification rules such that it becomes a decision procedure for the monadic class with equality. The completeness of the method follows from a general notion of redundancy for clauses and superposition inferences

    Basic paramodulation

    No full text
    We introduce a class of restrictions for the ordered paramodulation and superposition calculi (inspired by the {\em basic\/} strategy for narrowing), in which paramodulation inferences are forbidden at terms introduced by substitutions from previous inference steps. In addition we introduce restrictions based on term selection rules and redex orderings, which are general criteria for delimiting the terms which are available for inferences. These refinements are compatible with standard ordering restrictions and are complete without paramodulation into variables or using functional reflexivity axioms. We prove refutational completeness in the context of deletion rules, such as simplification by rewriting (demodulation) and subsumption, and of techniques for eliminating redundant inferences

    Acceptability with general orderings

    Full text link
    We present a new approach to termination analysis of logic programs. The essence of the approach is that we make use of general orderings (instead of level mappings), like it is done in transformational approaches to logic program termination analysis, but we apply these orderings directly to the logic program and not to the term-rewrite system obtained through some transformation. We define some variants of acceptability, based on general orderings, and show how they are equivalent to LD-termination. We develop a demand driven, constraint-based approach to verify these acceptability-variants. The advantage of the approach over standard acceptability is that in some cases, where complex level mappings are needed, fairly simple orderings may be easily generated. The advantage over transformational approaches is that it avoids the transformation step all together. {\bf Keywords:} termination analysis, acceptability, orderings.Comment: To appear in "Computational Logic: From Logic Programming into the Future

    A Polynomial Translation from the Two-Variable Guarded Fragment with Number Restrictions to the Guarded Fragment

    Full text link
    We consider a two-variable guarded fragment with number restrictions for binary relations and give a satisfiability preserving transformation of formulas in this fragment to the three-variable guarded fragment. The translation can be computed in polynomial time and produces a formula that is linear in the size of the initial formula even for the binary coding of number restrictions. This allows one to reduce reasoning problems for many description logics to the satisfiability problem for the guarded fragment

    New results on rewrite-based satisfiability procedures

    Full text link
    Program analysis and verification require decision procedures to reason on theories of data structures. Many problems can be reduced to the satisfiability of sets of ground literals in theory T. If a sound and complete inference system for first-order logic is guaranteed to terminate on T-satisfiability problems, any theorem-proving strategy with that system and a fair search plan is a T-satisfiability procedure. We prove termination of a rewrite-based first-order engine on the theories of records, integer offsets, integer offsets modulo and lists. We give a modularity theorem stating sufficient conditions for termination on a combinations of theories, given termination on each. The above theories, as well as others, satisfy these conditions. We introduce several sets of benchmarks on these theories and their combinations, including both parametric synthetic benchmarks to test scalability, and real-world problems to test performances on huge sets of literals. We compare the rewrite-based theorem prover E with the validity checkers CVC and CVC Lite. Contrary to the folklore that a general-purpose prover cannot compete with reasoners with built-in theories, the experiments are overall favorable to the theorem prover, showing that not only the rewriting approach is elegant and conceptually simple, but has important practical implications.Comment: To appear in the ACM Transactions on Computational Logic, 49 page
    • 

    corecore